2 – Imunidade, Alergia e Grupos Sanguíneos
Imunidade e Alergia
O corpo humano tem a capacidade de resistir a quase todos os tipos de organismos ou toxinas que tendam a lesar tecidos e órgãos. Essa capacidade é denominada imunidade. A imunidade adquirida desenvolve-se depois que o corpo é pela primeira vez agredido por um microorganismo ou por uma toxina bacteriana. Com frequência leva semanas ou meses para desenvolver-se.
Já a imunidade inerente ao organismo decorre de processos gerais e não de processos dirigidos contra organismos patogênicos específicos. Essa é a chamada imunidade inata. A ação dos processos de imunização se faz pela fagocitose; pela destruição de microorganismos pelas secreções ácidas do estômago e pelas enzimas digestivas; pela resistência da pele à invasão por organismos e pela presença de elementos no sangue que se fixam a organismos estranhos ou toxinas, destruindo-os. A imunidade adquirida pode, muitas vezes, conferir grau extremo de proteção. Existem no organismo dois mecanismos básicos, porém estreitamente associados, de imunidade adquirida. Num deles, o corpo elabora anticorpos circulantes, que são moléculas de globulina capazes de atacar o agente invasor. Esse tipo de imunidade é denominado imunidade humoral ou imunidade de células B, porque são os linfócitos B que produzem os anticorpos. O segundo tipo de imunidade adquirida é dado pela formação de grande número de linfócitos ativados especificamente destinados a destruir o agente invasor. Esse tipo de imunidade é chamado de imunidade mediada por células ou imunidade das células T, porque os linfócitos ativados são os linfócitos T.
Tanto os anticorpos como os linfócitos ativados são formados nos tecidos linfóides do corpo. Ambos os tipos de imunidade adquirida são induzidos por antígenos. Em geral, os antígenos são proteínas ou grandes polissacarídeos. O processo de antigenicidade depende de grupos moleculares denominados epítopos.
A imunidade adquirida é produto do sistema linfocitário do corpo. Os linfócitos se localizam predominantemente nos linfonodos, mas também estão presentes em tecidos linfóides especiais como o baço, áreas situadas na submucosa do tubo gastrintestinal e a medula óssea. O tecido linfóide do tubo gastrintestinal, por exemplo, é o primeiro a ser exposto aos antígenos que penetram pelo tubo digestivo.
O tecido linfóide do baço e da medula óssea desempenha o papel específico de interceptar os agentes antigênicos que conseguem chegar ao sangue circulante. Ambos os tipos de linfócitos originam-se no embrião a partir de células-tronco hematopoéticas pluripotenciais. Os linfócitos que são destinados à formação de linfócitos T migram inicialmente para o timo e são aí pré-processados. Os linfócitos B, destinados a formar anticorpos, são pré-processados no fígado, nos meados da vida fetal, e na medula óssea, no fim da vida fetal e depois do nascimento.
Essa população de células foi originalmente descoberta em aves, nas quais o pré-processamento ocorre na bursa de Fabrícius, uma estrutura não encontrada em mamíferos. Depois de formados na medula óssea, os linfócitos T migram primeiro para o timo. Nessa glândula eles se multiplicam com rapidez e reagem com diferentes antígenos específicos.
Esses diferentes tipos de linfócitos T processados deixam então o timo e espalham-se por todo o corpo, alojando-se nos tecidos linfóides. O timo também assegura que os linfócitos T que ele produz não reagirão contra proteínas ou outros antígenos presentes nos próprios tecidos do corpo. O timo seleciona quais os linfócitos T devem ser liberados, primeiro misturando-os com virtualmente todos os “auto-antígenos” específicos existentes nos próprios tecidos do corpo. Se um linfócito T reage, ele é destruído e fagocitado, que é o que acontece com até 90% das células.
Os linfócitos B diferem dos linfócitos T sob dois aspectos: em primeiro lugar, ao invés de a célula como um todo tornar-se reativa contra o antígeno, como ocorre com os linfócitos T, os linfócitos B secretam anticorpos, que são os agentes reativos. Os anticorpos são grandes moléculas protéicas capazes de combinar-se com os antígenos e destruí-los. Em segundo lugar, os linfócitos B apresentam diversidade ainda maior que a dos linfócitos T, dando assim origem a muitos e muitos milhões – talvez até mesmo bilhões – de anticorpos com diferentes reatividades específicas. Após o pré-processamento, os linfócitos B, da mesma forma que os linfócitos T, migram para os tecidos linfóides distribuídos por todo o corpo, onde se alojam a pequena distância das áreas ocupadas pelos linfócitos T.
Quando um antígeno específico entra em contato com os linfócitos T e B no tecido linfóide, alguns dos linfócitos T são ativados para formar “células T ativadas”, e alguns dos linfócitos B formam anticorpos. Há milhões de tipos diferentes de linfócitos B pré-formados e igual número de linfócitos T pré-formados, que são capazes de dar origem a anticorpos ou células T altamente específicas quando estimulados pelos antígenos apropriados. Esse linfócito só pode então ser ativado pelo tipo específico de antígeno com o qual ele pode reagir.
Após ser ativado por seu antígeno específico, o linfócito reproduz-se intensamente. Quando se trata de um linfócito B, seus descendentes acabam por secretar anticorpos que irão circular por todo o corpo. Os linfócitos semelhantes são denominados clones e derivam originalmente de um linfócito específico. No caso dos linfócitos B, cada um deles tem na superfície de sua membrana celular cerca de 100.000 moléculas de anticorpo, que vão reagir estritamente com apenas aquele tipo específico de antígeno. Por isso, quando o antígeno específico se apresenta, ele imediatamente se liga à membrana celular do linfócito e isto leva ao processo de ativação.
No caso dos linfócitos T, moléculas muito semelhantes a anticorpos, denominadas proteínas receptoras de superfície ou marcadores de células T, localizam-se na superfície da membrana celular sendo altamente específicas para o antígeno ativador específico. Antes da exposição a um antígeno específico, os clones de linfócitos B permanecem quiescentes no tecido linfóide. Com a chegada de um antígeno estranho, entretanto, os macrófagos do tecido linfóide fagocitam o antígeno e o apresentam, então, aos linfócitos B adjacentes.
No caso dos linfócitos T, moléculas muito semelhantes a anticorpos, denominadas proteínas receptoras de superfície ou marcadores de células T, localizam-se na superfície da membrana celular sendo altamente específicas para o antígeno ativador específico. Antes da exposição a um antígeno específico, os clones de linfócitos B permanecem quiescentes no tecido linfóide. Com a chegada de um antígeno estranho, entretanto, os macrófagos do tecido linfóide fagocitam o antígeno e o apresentam, então, aos linfócitos B adjacentes.
Simultaneamente, o antígeno é apresentado às células T, e então células T “auxiliares” ativadas também passam a contribuir para a ativação dos linfócitos B. Os linfócitos B específicos transformam-se em plasmócitos secretores de anticorpos. Os anticorpos são secretados na linfa e levados para o sangue circulante. Alguns dos linfócitos B, ao invés de transformarem-se em plasmócitos secretores de anticorpos, transformam-se em linfócitos B de memória.
O primeiro contato com o antígeno e que leva à produção de plasmócitos e linfócitos B de memória é denominado resposta primária. A exposição subsequente ao antígeno vai causar, então, uma resposta de anticorpos muito mais rápida e muito mais potente, pois o número de células de memória é muito maior do que o número de linfócitos clonados originalmente presentes.
A maior potência e a maior duração da resposta secundária explicam por que as vacinações são geralmente efetuadas injetando-se um antígeno em doses múltiplas, com períodos de várias semanas ou vários meses entre as aplicações. Os anticorpos são gamaglobulinas denominadas imunoglobulinas e são compostos por combinações de duas cadeias polipeptídicas leves e duas pesadas. Cada cadeia pesada é paralela a uma cadeia leve em uma de suas extremidades. Cada cadeia possui uma parte variável e uma parte constante.
A parte variável é diferente para cada anticorpo específico e é essa parte que se fixa a um tipo particular de antígeno. Cada cadeia tem forma estérica diferente para cada especificidade antigênica, possibilitando a ligação do anticorpo ao antígeno. Os anticorpos agem por ataque direto sobre o invasor e pela ativação do sistema do complemento. A ação direta ocorre através de aglutinação de partículas graças à natureza bivalente dos anticorpos, precipitação, neutralização e lise direta das membranas. (A lise é o processo de ruptura ou dissolução da membrana plasmática ou da parede bacteriana, que leva à morte da célula e à liberação de seu conteúdo.)
A maior parte da proteção pelos anticorpos, entretanto, vem através dos efeitos amplificadores do sistema do complemento. Complemento é o termo coletivo para descrever um sistema de cerca de 20 proteínas distintas, muitas das quais são precursoras de enzimas. Os principais atores desse sistema são C1 a C9, B e D. Todas elas estão normalmente presentes entre as proteínas plasmáticas. Quando um anticorpo se liga a um antígeno, um sítio reativo específico na parte constante do anticorpo fica descoberto ou ativado.
Esse sítio liga-se à molécula C1 do complemento, desencadeando uma cascata de reações sequenciais. Formam-se múltiplos produtos finais e vários deles causam efeitos importantes como a opsonização pelo C3b e consequente fagocitose, a lise pelo complexo lítico C5b6789, a aglutinação, a neutralização de vírus e a ativação de mastócitos e basófilos pelos fragmentos C3a, C4a e C5a. Após a ativação de células T, ocorre proliferação de linfócitos T e formação de linfócitos T de memória, que aumentam a rapidez da resposta nas exposições subsequentes ao mesmo antígeno.
Há muitos tipos distintos de células T, sendo os principais os linfócitos T auxiliares, T citotóxicos e T supressores. As células T auxiliares constituem a maior parte dos linfócitos T e estimulam o crescimento e a proliferação de células T citotóxicas, células T supressoras e ativam macrófagos por todo o corpo. As células auxiliares é que são inativadas ou destruídas pelo vírus da AIDS. Isto virtualmente paralisa todo o sistema imune, o que acarreta os conhecidos efeitos letais da AIDS.
As células T citotóxicas realizam ataque direto após a fixação através da produção de proteínas formadoras de orifícios, as perforinas. Em seguida, a célula T citotóxica libera substâncias citotóxicas diretamente no interior da célula atacada. Elas também são conhecidas como natural killers e desempenham papel importante na destruição de células malignas e outros tipos de células estranhas. As células T supressoras suprimem as funções tanto das células T citotóxicas, como das células T auxiliares.
Acredita-se que essa função supressora sirva ao propósito de regular as atividades das demais células. O mecanismo pelo qual o sistema imune não agride as células do próprio organismo é conhecido como tolerância imunológica. A maior parte da tolerância resulta da seleção de clones durante o pré-processamento dos linfócitos T no timo e dos linfócitos B na medula óssea.
O fracasso dos mecanismos de tolerância causa as doenças de auto-imunidade como a febre reumática, um tipo de glomerulonefrite, a miastenia grave e o lúpus eritematoso. A alergia ocorre em pessoas que apresentam grande quantidade de anticorpos IgE, os quais possuem forte propensão à fixação em mastócitos e basófilos.
Quando um alérgeno interage com um anticorpo IgE ocorre uma reação alérgica através do rompimento das membranas e liberação dos grânulos presentes nos mastócitos e basófilos. Esses grânulos contém principalmente histamina, substância de reação lenta da anafilaxia ou SRSA que é uma mistura de leucotrienos; a substância quimiotáxica para eosinófilos; a heparina e fatores de ativação plaquetária. Essas substâncias causam certos fenómenos: dilatação dos vasos sanguíneos locais, atração dos eosinófilos e neutrófilos para o sítio reativo, lesão dos tecidos locais pela protease, aumento da permeabilidade dos capilares e perda de líquido para os tecidos e contração das células musculares lisas locais. Por conseguinte, qualquer um dos diferentes tipos de respostas teciduais anormais pode ocorrer, dependendo do tipo de tecido em que se verifica a reação alérgeno-reagina.
Grupos Sanguíneos
O sangue de pessoas diferentes geralmente tem propriedades antigênicas e imunitárias diversas, de modo que os anticorpos presentes no plasma de um sangue reagem, considerando como antígenos, com elementos existentes na superfície das hemácias de outro sangue. Dois grupos particulares de antígenos têm, mais do que outros, tendência a causar reações transfusionais. São eles o chamado sistema A-B-O de antígenos e o sistema Rh. Os sangues são divididos em diferentes grupos em relação ao sistema A-B-O e tipos em relação ao sistema Rh.
Quando nem o aglutinógeno A nem o B estão presentes, o grupo sanguíneo é o grupo O. Quando apenas o aglutinógeno A está presente, o sangue é do grupo A. Quando apenas o aglutinógeno B está presente, o sangue é do tipo B. Quando ambos os aglutinógenos, A e B, estão presentes, o sangue é do grupo AB. Quando o aglutinógeno tipo A não está presente nas hemácias de uma pessoa, anticorpos conhecidos como aglutininas anti-A se desenvolvem no plasma.
O sangue do grupo O, embora não apresente aglutinógenos, contém tanto a aglutinina anti-A como a anti-B. O sangue do grupo B contém aglutinógenos tipo B e aglutininas anti-A. O sangue do grupo AB contém os aglutinógenos A e B, mas nenhuma aglutinina. As aglutininas são produzidas por indivíduos que não têm as substâncias antigênicas em suas hemácias devido ao fato de que pequenas quantidades de antígenos A e B penetram no corpo por meio de alimentos, de bactérias e de outras maneiras após o nascimento.
No caso de transfusão de sangue de tipos incompatíveis, como as aglutininas têm dois sítios de fixação (tipo IgG) ou dez sítios (tipo IgM), uma única aglutinina pode se fixar a duas ou mais hemácias ao mesmo tempo, fazendo com que elas se aglutinem. Esses aglomerados entopem vasos sanguíneos por todo o sistema circulatório. Durante as horas e dias subsequentes, os leucócitos fagocitários e o sistema retículoendotelial destroem as células aglutinadas, liberando hemoglobina no plasma.
Em algumas reações transfusionais ocorre hemólise imediata por ativação do complemento. Uma das consequências mais letais das reações transfusionais é a insuficiência renal aguda. Quando a quantidade total de hemoglobina no sangue se eleva acima de um nível crítico, grande parte do excesso vaza através das membranas glomerulares para os túbulos renais.
Quando em quantidade pequena, essa hemoglobina pode ser reabsorvida para o sangue pelo epitélio tubular, entretanto, quando a quantidade é grande, apenas uma pequena porcentagem é reabsorvida, fazendo a concentração tubular de hemoglobina elevar-se de tal modo que ela se precipita e bloqueia muitos túbulos. Quando hemácias contendo fator Rh são injetadas em uma pessoa sem esse fator, desenvolvem-se muito lentamente aglutininas anti-Rh.
A transfusão de sangue Rh positivo numa pessoa Rh negativa que nunca tenha sido antes exposta a sangue Rh positivo não causa absolutamente qualquer reação imediata. A eritroblastose fetal é uma doença de fetos e de recém-nascidos, caracterizada por aglutinação progressiva e fagocitose subsequente das hemácias. Na maioria dos casos de eritroblastose fetal, a mãe é negativa e o pai é positivo. O bebê, sendo positivo, faz com que a mãe desenvolva aglutininas anti-Rh. Ocorre aglutinação do sangue fetal e subsequentemente hemólise, liberando hemoglobina no sangue. A ação dos macrófagos leva a um aumento da bilirrubina, em função da grande quantidade de hemoglobina degradada, o que deixa a pele amarelada (icterícia). O tratamento habitual da eritroblastose fetal consiste em substituir o sangue da criança por sangue Rh negativo.
Nenhum comentário:
Postar um comentário